

A Geno Technology, Inc. (USA) brand name

PEROXsay™

A Quantitative Peroxide Assay

(Cat. # 786-440)

INTRODUCTION

PEROXsay[™] is a colorimetric quantitative peroxide assay that measures the oxidation of ferrous (Fe²⁺) ions to ferric (Fe³⁺) ions. Basically, the peroxides react with a sugar alcohol converting it to a peroxyl radical that subsequently starts the oxidation of ferrous ions to ferric ions. The acidic pH of the PEROXsay[™] Component 2 allows the ferric (Fe³⁺) ion to complex with xylenol orange, a constituent of PEROXsay[™] Component 1, resulting in a change in absorbance that is proportional to the peroxide concentration. The PEROXsay[™] is suitable for the following applications; measurement of lipid peroxidation of low density lipoproteins and liposomes, quantifying level of protein damaging peroxides in detergents, and monitoring protein glycation. The PEROXsay[™] assay is designed for microtiter plates, but can be scaled up for use with 1ml cuvettes.

ITEM(S) SUPPLIED (Cat. # 786-440)

Description	Size
PEROXsay [™] Component 1	50ml
PEROXsay [™] Component 2	0.5ml

STORAGE CONDITIONS

The kit is shipped at ambient temperature. Store the kit at 4°C, when stored properly the kit is stable for 1 year.

ADDITIONAL ITEMS REQUIRED

30% Hydrogen peroxide solution (8.8M)

PREPARATION BEFORE USE:

Assay Solution

- 1. For microtiter plate assays, you require 200µl Assay Solution for each sample and for cuvettes you will require 1ml Assay Solution.
- Add 1 volume of PEROXsay[™] Component 2 to 100 volumes PEROXsay[™] Component 1 and mix.
- 3. The Assay Solution must be made fresh on the day of the assay.

Hydrogen Peroxide Standards

- Add 5µl 30% Hydrogen Peroxide solution to 440ml deionized (DI) water to give a 100µM concentration.
- 2. Serially dilute the $100\mu M$ hydrogen peroxide solution four times to give hydrogen peroxide standards of 6.25, 12.5, 25 and $50\mu M$.
 - **NOTE:** To standardize the starting 30% hydrogen peroxide solution, use the molar coefficient of 43.6 M⁻¹cm⁻¹ for hydrogen peroxide at 240nm.

PROTOCOL

NOTE: The linear range for this assay is 0-50 μ M. Dilute samples with higher peroxide concentrations. In addition, samples with >1 μ M peroxide may cause bleaching and low absorbance reading, to alleviate this issue assay a 1:100 dilution in parallel.

NOTE: For samples that may have chelating proteins, transition metals or strong absorbance at or near 560nm, use a blank of PEROXsay[™] Component 1 without PEROXsay[™] Component 2. Subtract this blank from the assayed sample to control for the above interferences.

- 1. For each volume of sample, add 10 volumes of Assay Solution.

 NOTE: For a microtiter plate, add 200µl Assay Solution to wells with20µl sample.
- 2. Mix and then incubate at room temperature for 30 minutes.
- After incubation, measure the absorbance at 560nm.
 NOTE: Absorbances can be read at 560-600nm, for plate readers use 595nm
- 4. Plot a standard curve using the absorbances of the hydrogen peroxide samples and calculate the concentration of peroxides in your sample. (See Figure 1)

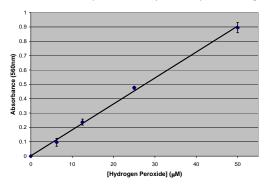
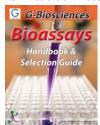



Figure 1: PEROXsay[™] Linear Range of Standard Curve. A 1mM hydrogen peroxide solution was serially diluted and 50µl was used in an assay with 500µl PEROXsay[™] Assay Solution. Absorbances were measured at 560nm. The error bars show the standard deviation of 10 individual experiments.

RELATED PRODUCTS

Download our Protease & Phosphatase Inhibitors, Enzyme & Assays Handbook.

http://info.gbiosciences.com/complete-bioassay-handbook

For other related products, visit our website at <u>www.GBiosciences.com</u> or contact us.

Last saved: 8/2/2012 CMH

www.GBiosciences.com